
Performance Analysis of Location Profile Routing
David R. Bild, Yue Liu, Robert P. Dick, Z. Morley Mao, and Dan S. Wallach

Abstract—We propose using the predictability of human mo-
tion to eliminate the overhead of distributed location services
in human-carried MANETs, dubbing the technique location
profile routing. This method outperforms the Geographic Hashing
Location Service when nodes change locations 2×more frequently
than they initiate connections (e.g., start new TCP streams), as
in applications like text- and instant-messaging. Prior character-
izations of human mobility are used to show that location profile
routing achieves a 93% delivery ratio with a 1.75× first-packet
latency increase relative to an oracle location service.

I. INTRODUCTION

Traditional routing protocols rely on shared global state
and thus scale poorly in mobile ad hoc networks (MANETs)
with frequent changes in topology. Routing overhead grows
quadratically in the number of nodes for distance vector and
link state protocols [1] that must distribute changes to all nodes.
The natural hierarchy used to reduce the overhead traffic in
networks like the Internet (e.g., CIDR) is not available. On-
demand methods [2], [3], [4] delay routing table updates until
needed, but only reduce overhead by constant factors—the
scaling behavior is unchanged.1 In contrast, stateless protocols
that use local information to make forwarding decisions have
the potential to scale.

One stateless protocol, Greedy Perimeter Stateless Routing
(GPSR) [5], uses geography: messages are addressed to specific
locations. Nodes already know their own locations (e.g., via
GPS), allowing each intermediate step to bring the message
closer to its destination. No global routing state is needed.
Essentially though, this technique just shifts the complexity
from routing to addressing. A forwarding node only needs its
own locally-known location, but the original sender requires
the current location of the recipient, a global mapping.

Distributed location services [6], [7] can maintain this iden-
tity to location mapping, but also have drawbacks. Hierarchy
is imposed to manage scalability, but overhead still increases
super-linearly [7]. Further, locations are sensitive information,
so complicated schemes are required to protect privacy and
anonymity [8]. We observe that if node locations are predictable,
the mapping can be done locally as well, reducing the scaling
and privacy concerns.

In fact, human locations are highly regular with ∼93%
predictability [9]. In MANETs of human-carried devices,
predicative models of future locations can be pre-shared among
trusted participants. These models combined with GPSR allow
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low-overhead addressing and routing, with network scalability
limited only by the actual traffic. We name this approach
location profile routing (LPR) [10] and study its performance
potential. We determine the number of locations that must be
addressed to achieve the peak 93% packet delivery rate and
derive the associated latency and traffic overheads. Finally, we
determine the conditions under which LPR outperforms the
Geographic Hashing Location Service.

II. DESCRIPTION OF LOCATION PROFILE ROUTING

Location profile routing (LPR) stems from the observation
that humans generally have simple, repeated motions, with most
time spent at a few common time-dependent locations [11]
easily captured by a compact predictive model. For the many
potential2 applications of human-carried MANETs that can tol-
erate the a reduction in delivery reliability or increase in latency
(we previously described a particularly compelling application—
censorship-resistant personal communication [10]), LPR elimi-
nates overhead traffic for route maintenance.

Figure 1 illustrates the main steps of LPR. Nodes continu-
ously monitor their positions to build location profiles (step 1),
which are then shared with potential future contacts directly
(step 2). This sharing happens a priori when two nodes are
directly connected (i.e., one hop apart), limiting bandwidth
usage. A message is addressed to the location(s) predicted
by the profile (step 3) and delivered via GPSR. Routing fails
if none of predicted locations are correct, but delay-tolerant
delivery is a possible fallback. Changes to the motion patterns
are rare (e.g., when someone starts a new job or moves to a
new home) and thus distributed via the network (step 4).

Location Profiles: Motion patterns can be modeled in many
ways, but a simple discrete model is sufficient for our purposes.
A location profile is a function P mapping a time interval (e.g.,
Tuesday 15:30–15:40) to a set of location–confidence tuples,
with higher confidence indicating stronger belief in the node
occupying that location at that time:

P : time 7→ {(loc1, conf1), . . . , (locn, confn)}

The precise discretization level is unimportant. Both cell-tower
granularity (3 km2, 1 h) and WiFi AP granularity (157 m2,
10 min) have similar predictabilities at 93% [9] and 92% [12].

Various implementations are possible, but for completeness
we summarize the Prediction-by-Partial-Match (PPM) approach
of Burbey and Martin [12]. PPM is a variable-order Markov
model over a sequence S of observed time-interval–location
pairs, S = {T1L1T2L2 . . . TnLn}. This defines a probability
distribution over the next location conditioned on the prior
k elements of context. In our case, prior locations are not
known, so our definition of P corresponds to the first-order

2Ad hoc networks are not yet widely used by the general public.
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1) Nodes track own
    positions to 
    automatically 
    develop location 
    profiles.

2) Location profiles are
    initially shared directly.

3) Messages are sent to the
    (possibly multiple) locations 
    predicted by the location profile.

Incorrectly predicted
location

Correctly
predicted location

 4) Infrequent changes to location 
     profiles are delivered
     through the network.

Current location
of a node

Common, but 
currently unoccupied,
location of a node

Key

Fig. 1: Illustration of the main components in location profile routing [10].

variant (k = 1, i.e., context is the current time). We briefly
discuss zero- (no context) and third-order (context includes the
previous location) variants. This scheme captures most of the
predictability (90% [12] vs. the 93% reported maximum [9]).

Profile Distribution: Location profiles are disseminated a-
priori and out-of-band, similar to telephone numbers or email
addresses. For our envisioned applications—communication
between friends—the profiles can be exchanged face-to-face.
In other cases, a centralized service, similar to a telephone
directory, might be needed. Regardless, the salient point
is that the profiles are known a-priori and thus can be
exchanged outside of the network. Although changes could be
disseminated out-of-band as well, in-network propagation is
feasible because updates are infrequent and sent only to select
participants (e.g., friends). Opportunistically updating when
devices are in close proximity further bounds the overhead.

Addressing Policy: The addressing policy translates the
location–confidence tuples output by the profile into a message
delivery strategy specifying when and where packets will be
sent. Only one of the locations can be correct, so the order
and method in which they are tried influences the network
throughput and latency trade-off. Their spatial correlations
influence the minimum cost routing strategy (e.g., Steiner tree)
to reach all locations. The primary focus of this paper is
analyzing these performance characteristics and trade-offs.

Fallback Method: LPR fails outright when nodes are in
unpredictable locations, i.e., at least 7% of the time [9].
Although this may be tolerable for many applications in which
messages can be redelivered later, it is non-ideal. As this is
not our focus, we omit details here, but possible strategies
include delay tolerant delivery (in-network buffering of the
message at a common location until the node’s return) or
rendezvous delivery (messages are sent to a rendezvous location
which the node, when not in a predictable location, apprises
of current forwarding instructions). Such schemes allow for
reliable delivery with average overheads still drastically lower
than traditional routing approaches.

III. PERFORMANCE ANALYSIS

We use prior empirical studies of human motion patterns to
develop analytical models suitable for studying the performance
of LPR. Barabási et al. studied six-month location traces
of 100,000 European cellphone users [11], [9] at cell-tower
granularity, reporting a maximum predictability of 93%. The
size and duration of the traces make this best source to date.

To confirm that locations are as predicable at WiFi granularity,
we turn to Burbey and Martin’s study [12] of traces from 275
WiFi users at UCSD [13]. They found similar predictability,
92%, confirming that cellular granularity is not limiting.

A. How Predictable are Common Locations?

A location profile returns multiple locations in order of
likelihood, so delivery cost and latency depends on how many,
K, must be targeted to reach the user. Intuitively, most time is
spent in two locations—home and work—so a zero-order model
(i.e., not conditioned on current time) might be sufficient. The
pmf is π̃(k) = pk

∏k−1
i=1 (1 − pi), where pi is the probability

that the target is in location i. The pi’s are roughly distributed3

as pi ∝ i−1 with proportionality constant c ≈ 0.48 [11]. K
is equivalent to a beta-geometric distribution, K ∼ Geom(L)
with L ∼ Beta(c, 1− c), and has CDF

Π̃(k) = 1− 1

kB(k, 1− c)
. (1)

The match4 to measured data [9] is shown in Figure 2. The
first moment diverges, but two locations suffice only 60% of
the time and ten achieve only 80% delivery. Conditioning the
model on time of day is necessary.

The first-order model (with 10 min intervals) is 90% accurate
for the first location on the UCSD dataset [12], nearing the
93% upper bound and suggesting marginal gains for additional
guesses. A third-order model is surprisingly only slightly better
at 92%. The larger cellular dataset (with 1 h intervals) is more
pessimistic. The accuracy R(t) of the first-order model here is
given by

R(t) = c1 sin

(
2π

24
t+

2π

8

)
+ c2 sin

(
2π

12
t− 2π

24

)
+ c3, (2)

where c1 = 0.148, c2 = 0.077, c3 = 0.657 and t ∈ [0, 167] is
the hour of the week, i.e., t = 0 is Monday 00:00–0:59 and
t = 167 is Sunday 23:00–23:59. As shown in Figure 3, this
form captures one-day and half-day periodicities. On weekends,
the variability is lower and the intervals of highest predictability
occur later in the day The accuracy on weekdays ranges from
55% to 90%, averaging R̄ ≈ 65%.

3A true Zipfian distribution requires a bounded domain i ∈ [1, N ] with
c = 1

HN
for the pi’s to total one. The following results are for the reported

empirical form, not a true distribution.
4L ∼ Beta(0.60, 0.72) yields a tighter fit, but lacks an explanatory origin.

It might result from a mixture of different upper bounds N in the Zipfian
model of the pi’s—individuals have different numbers of common locations.
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Fig. 2: The probability that a user
currently occupies one of his k most-
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Equation 1.
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Fig. 3: The time-dependent regularity
R(t), i.e., the probability the user is in the
most common location associated with
that time interval.
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Fig. 4: Success rate of a first-order profile
versus the number of locations attempted.
Rates during maximum (night) and mini-
mum (day) predictability are shown too.

Assuming the power law form, pi ∝ i−1, holds during each
time interval5, equations 1 and 2 can be combined as

Π̃1(k) = 1−
∫ 168

0

D(t)

kB(k, 1−R(t))
dt, (3)

where D(t) is the traffic density at time t, to yield the average
probability that packet addressed to the k-most common
locations reaches the target, shown in Figure 4. We assume a
uniform density, D(t) = 1

168 , but other known traffic patterns
can be substituted. k = 5 achieves 85% success and 93%
requires only k = 12. More locations are required during
the day and fewer at night. The exact number of locations
to attempt is application-specific, depending on the trade-off
between between desired delivery rate and cost, i.e., increased
latency and traffic overhead.

B. What Additional Latency and Traffic is Induced by LPR?

Some packets must be sent to multiple locations to have an
adequate packet delivery rate, increasing latency and traffic
by constant factors. Note that the costs increase only for the
first packet in a stream. Subsequent packets are sent directly
to the now-known current location. The true average overhead
depends on the percentage of first packets, which is low for
applications like text-messaging and email and higher for
interactive applications like voice chat. We report overheads
for first packets only, which readers should scale by the first
packet percentage of their applications.

We assume that receiver common locations and sender
locations are uniformly distributed in the network.6 Thus, we
can report overheads relative to the average latency (round-
trip time) and traffic cost (round-trip hop count) for a single
delivery attempt, e.g., a 2× increase.

Parallel delivery to all k common locations does not increase
latency, but increases traffic by k×. Serial delivery—attempting
each location only if the previous failed, using ACKs and a
timeout to detect failure—reduces the traffic overhead. The
pmf of the factor increase T , plotted in Figure 6, is

Pr[T = t] = π̃1(t), (4)

5The number of common locations is inversely correlated with R(t) [9]
(Fig. 3B), suggesting that it does.

6Spatially-correlated locations can reduce overheads (see Section III-C).

where π̃1 is the pmf associated with Equation 3. Latency
increases similarly, as shown in Figure 5.

A combined approach—addressing a subset of the locations
in parallel—can fine-tune the trade-off. For example, four
different groupings can be used when trying three locations
(∼ 81% success rate).

1 2 3 1 2 3 1 2 3 1 2 3

All locations within a group (a box in the diagram) are tried
concurrently and groups are tried serially from left to right, as
needed. Formally, a grouping G is a partition of the common
locations, G = {g1, g2, . . .}, with the property that for i < j,
all locations in group gi are more probable than those in gj .
Let κ(g) denote the index of the most common location in g,
e.g., κ(g1) = 1. Then, the probability that group g is tried, i.e.,
that all previous groups failed, is Φ1(g) = 1− Π̃1(κ(g)− 1).
Thus, the average latency increase L̄ for a grouping G is

L̄(G) =
∑
g∈G

Φ1(g) (5)

and the average traffic overhead T̄ is

T̄ (G) =
∑
g∈G
|g|Φ1(g). (6)

Figure 7 shows the Pareto fronts for several average success
rates, i.e., the maximum number of locations attempted. At the
knees, L̄ ≈ 1.25× and T̄ ≈ 3–4×. These curves are network
averages. At runtime when a specific location profile is known,
the precise trade-offs for that instance can be computed.

C. Under What Conditions Does LPR Outperform Location
Services?

LPR trades the cost of updating a location service as devices
move for multiple transmissions at the first packet. We use a
simple analytical model to derive the network conditions under
which LPR outperforms the Geographic Hashing Location
Service (GHLS) [7], a scalable distributed location service. Let
f be the network-wide location update rate (which increases
with node movement), r be the network-wide first-packet rate, s
be the average number of hops between a node and its GHLS
location server, p be the average number of hops between
a source and destination, and T̄ , as previously defined, be

3
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the average number of destinations attempted by LPR. The
location update, location query, and first-packet delivery costs
(i.e., transmission counts) for GHLS are7 fs, 2rs, and 2rp. LPR
has only the first-packet delivery cost, 2T̄ rp. After rearranging
the total costs in terms of f

r and p
s , we see that LPR has lower

overhead when
f

r
>
p

s
(2T̄ − 2)− 2. (7)

When s = p (source and destination are uniformly distributed
over the entire field) and T̄ ≈ 3 (from Figure 7), this simplifies
to f

r > 2; LPR outperforms GHLS when the location update
rate is more than twice the first-packet rate. This bound
further decreases when sources and destinations are spatially
concentrated, i.e., p < s.

D. Reducing Overhead Via Spanning Trees

The preceding overhead and latency analysis assumed linear
routing, i.e., one transmission from the source per attempted
destination. A branching route (e.g., the Euclidean Steiner
tree containing the source and destinations) would reduce
this overhead, particularly when destinations are spatially-
clustered relative to the source. Unfortunately, this works only
for dense networks in which nodes are guaranteed to exist at
the branching (e.g., Steiner) points. Many real-world networks
are too irregular, and the linear approach should be used.

In dense networks, the branching approach is feasible. One
desires a routing tree with low total weight to minimize
traffic but also with short source-to-destination path lengths to
minimize latency. Although seemingly conflicting, both goals
are achievable. Taking n as the size of the network, trees with
weights within o(n) of the O(n)-length minimal Steiner tree
and source-to-destination path lengths within o(log n) of the
O(
√
n) straight-line distances exist [14]. We refer the reader

to Aldous and Kendall for details and construction [14].

IV. CONCLUSION

We have argued that predicable motion patterns can re-
place expensive distributed location services in human-carried
MANETs, reducing overhead transmissions. The promising

7See Das et al. (Section IV) [7] for the derivation. Our s is their 1
3
2h−1

√
2.

potential of LPR highlights the advantages of considering
deployment- and application-specific behaviors in lower levels
of the network stack. Our analysis focused on MANETs,
but the approach applies equally to delay-tolerant networks.
In light of growing commercial interest in device-to-device
communication for smartphones (e.g., Wi-Fi Direct), we hope
this work spurs further interest in adopting human behavior to
improve ad hoc network performance.
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