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ABSTRACT

Static NBTI Reduction Using Internal Node Control

David R. Bild

Negative Bias Temperature Instability (NBTI) is a signi�cant reliability concern for

nanoscale CMOS circuits. Its e�ects on circuit timing can be especially pronounced for

circuits with standby-mode equipped functional units, because these units can be sub-

jected to static NBTI stress for extended periods of time. This thesis proposes internal

node control, in which the inputs to individual gates are directly manipulated to prevent

this static NBTI fatigue. We give a mixed integer linear program formulation for the

optimal solution of this problem. The optimal placement of internal node control yields

an average 26.7% reduction in NBTI-induced delay over a ten year period for the IS-

CAS85 benchmarks when compared to a complementary technique, input vector control.

The combined application of the two techniques leads to an average 51.3% reduction in

NBTI-induced delay. Using the MILP formulation, we show that the use of multiple input

vectors, which would be cycled through during idle periods in order to spread the NBTI

degradation among more gates, is not bene�cial for these circuits. We �nd that the prob-

lem is NP-complete and present a linear-time heuristic which can be used to quickly �nd
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near-optimal solutions. The heuristic solutions are, on average, within 0.17% of optimal

and all were within 0.60% of optimal. Finally, because the benchmark circuits have small

gate counts relative to many modern circuits, we apply our heuristic to industrial-scale

circuits and present the results.
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CHAPTER 1

Introduction

1.1. Overview of NBTI

Due to the scaling trends of CMOS technology, Negative Bias Temperature Instability

(NBTI) is emerging as a signi�cant reliability concern for digital circuits. NBTI, which

in current technologies only signi�cantly a�ects PMOS transistors stressed with a nega-

tive bias (Vgs = -Vdd), manifests itself as an increase in threshold voltage that reduces

switching speed [1].

At the atomic level, NBTI is caused by an electric �eld dependent disassociation of

Si-H bonds at the Si/SiO2 interface. The hydrogen di�uses into the gate oxide in a

temperature-dependent reaction, leading to the formation of interface traps, which are

responsible for an increase in threshold voltage. These mechanisms lead to an interesting

recovery e�ect; when the stress is removed (Vgs = Vdd), the reaction reverses, with some

of the hydrogen di�using back towards the interface and bonding with the Si [1].

Under constant stress, static NBTI e�ects quickly lead to performance degradation.

However, thanks to the previously described recovery e�ect, for circuits experiencing

typical switching activity, the negative impacts of dynamic NBTI degradation take longer

to accumulate. For a 70 nm Berkeley Predictive Technology Model, Paul et al. predict an

�10% increase in delay after 10 years of operation for the ISCAS85 benchmarks [2, 3].
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During normal circuit operation, standard switching activity causes alternating stress

on the PMOS transistors and thus degradation is dominated by dynamic NBTI. However,

many designs employ sleep or clock-gating techniques in order to reduce dynamic power

consumption. In such schemes, idle functional units are put in standby or sleep mode

by having their inputs frozen or their clock transitions gated. This prevents extraneous

transitions, reducing dynamic power consumption. However, with the inputs stable for

long periods of time, PMOS transistors with low inputs may degrade due to static NBTI

e�ects. In this scenario, static NBTI optimization is particularly relevant.

1.2. Thesis Contribution

In this thesis, we propose and evaluate an internal node control technique to limit the

e�ect of this static NBTI stress. Internal node controls can be inserted at the output of

individual gates in order to force their outputs to speci�c values during standby. Using this

technique, static NBTI stress for a PMOS transistor can be eliminated, for example, by

forcing the output of the preceding gate to Vdd. However, internal node control imposes a

timing penalty; the additional circuitry required for node control introduces a small delay.

NBTI degradation on a timing-sensitive (i.e., critical path) transistor can be eliminated

by forcing non-critical path gates to circuit structure dependent values, such that a low

value is propagated to the NBTI-sensitive transistor.

We show that determining the optimal set of insertion points leading to the minimal

degradation in circuit delay after some elapsed time is NP-complete and formulate it as

a mixed integer linear program. For the ISCAS85 benchmarks, we �nd that the optimal

application of internal node control leads to an average 26.7% reduction in NBTI-induced
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delay over the solitary use of input vector control, a complementary technique. The com-

bined use of internal node control and input vector control leads to an average 51.3%

decrease in NBTI-induced delay. These techniques could be extended by the use of mul-

tiple input vectors, which would be cycled through to spread out the degradation over

more gates. We �nd, however, that for our benchmarks the addition of multiple vectors

does not improve the critical path delay. Due to the time complexity of the optimal for-

mulation, we present a linear-time heuristic to �nd good solutions in a reasonable amount

of time. The heuristic is within 0.17% of optimal on average and is always within 0.60%

of optimal. The INC placements require only a 1.6% increase in area.

1.3. Thesis Organization

In chapter 2, we discuss both models for NBTI degradation and related techniques for

the mitigation and prevention of static NBTI e�ects. In chapter 3, we present our model

of internal node control for static NBTI control and prove that the problem is NP-

complete. In chapter 4 we describe the mixed integer linear programming formulation

for its optimal solution and present the experimental results of our technique on the

ISCAS85 benchmarks. In chapter 5, we present our linear-time heuristic and show the

experimental results. Finally, in chapter 6, we describe the results of INC when applied

to large, industrial-sized circuits.
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CHAPTER 2

Negative Bias Temperature Instability

2.1. NBTI Models

Negative Bias Temperature Instability (NBTI) is a degradation mechanism a�ecting

PMOS transistors, which results in increased threshold voltage and thus slower switch-

ing speeds. The increase in threshold voltage is generally thought to be caused by the

generation of interface traps and oxide charge in PMOS transistors under negative bias

(Vgs = -Vdd). These interface traps, dangling bonds, and oxide charges are attributed

to an electric �eld dependant disassociation of Si-H bonds at the Si/SiO2 interface. In

the reaction-di�usion model, the currently accepted model for this mechanism, the in-

terface trap generation (reaction) results in free hydrogen that di�uses into the oxide

(di�usion) [4]. Both the reaction and di�usion regimes limit the rate of the degradation.

The speci�c di�usion species (H, H2, or a combination of the two) is not currently known,

meaning that there is still debate about the accuracy of the various di�usion models.

When the stress is removed, the hydrogen di�uses back towards the interface and can

re-bond with the Si. This reversal of the mechanism is known as the recovery e�ect.

This recovery e�ect complicates attempts to measure NBTI degradation because some of

the degradation recovers between the time that the stress is removed and the time that

measurements are taken. Several recent review papers provide detailed explanations and

discussions of these models [1, 4, 5, 6, 7].
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The NBTI models mentioned in the preceeding papers are useful for understanding the

physical mechanisms that lead to the degradation, but are too detailed for use in circuit-

level analysis. Cycle-based, transistor-level simulation is simply too time-consuming for

use in reliability analysis tools or reliability-aware CAD algorithms. Consequently, several

researchers have developed analytical models for predicting NBTI degradation [2,8,9,10,

11, 12, 13]. As mentioned in the previous paragraph, when the stress on a transistor is

removed, the reaction reverses and thus some of the degradation is also reversed. Because

this recovery e�ect is so pronounced for gates experiencing rapid switching, most analytical

models di�erentiate between static and dynamic stress. Static stress, as might occur in an

idle functional unit and with which we are concerned with in this thesis, occurs when the

transistor is stressed continously for a long period of time. Dynamic stress occurs when

the stress is repeatedly and alternately applied, as would be common in an operating

functional unit.

Much of the analytical modeling work has focused on dynamic stress. While models for

static stress do exist, due to the di�culties in obtaining experimental data for extended-

period static stress, they are not accurate for long time periods. The existing models

severely over-estimate the stress for periods of 5{10 years. Consequently, in this thesis

we do not explicity model the static stress as a function of time, but instead assume that

the degradation over 10 years will result in an approximate 10% increase in delay, as

suggested by Paul et. al [2]. This simpli�cation is appropriate for our work because we

are concerned with the aggregate long-term e�ects of constant NBTI stress.
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2.2. Managing NBTI Degradation

Several techniques have been proposed for dealing with the impacts of NBTI. These

methods generally fall into two groups: those that simply compensate for the NBTI-

induced timing degradation and those that actively attempt to decrease and mitigate the

degradation. In the following sections, we summarize and discuss existing work of both

types.

2.2.1. Compensating Techniques

Several techniques have been proposed for dealing with the impacts of NBTI. One class of

methods, which includes guard banding, gate sizing, Vdd tuning, and Vth tuning, has been

used in industry to compensate for timing degradation. Such techniques compensate for

the e�ects of NBTI at the expense of timing, area, or power because they do not attempt

to minimize the NBTI-induced degradation.

In guard banding, the maximum clock frequency of a circuit is arti�cially limited,

often by as much as 10%, to compensate for possible future NBTI-induced delay [14].

Sacri�cing a signi�cant percentage of the initially-available performance ensures that the

processor will not fail due to NBTI degradation. In gate sizing, the sizes of the transistors

are increased, thus increasing the initial speed of the circuit, so that the NBTI-degraded

circuit still meets the timing requirements. However, this technique imposes an 8%{12%

area overhead and increases power consumption [9]. Similarly, in Vdd and Vth tuning, the

voltage of the circuit is adjusted to increase the initial operating speed [9]. The problems

with this technique are two-fold. First, increasing the operating voltage increases the rate

of NBTI degradation, requiring a further increase of Vdd. Second, increasing operating
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voltage increases the power consumption of the circuit. Techniques that minimize the

NBTI degradation are needed.

2.2.2. Mitigating Techniques

Power gating and clock gating methods have been used to reduce the power consumption

of idle functional units [15]. In power gating, a sleep transistor, which can be turned

o� to prevent any static or dynamic power consumption, is added between the power

supply and the functional unit. In clock gating, the clock input to the idle functional

unit is disabled to prevent dynamic power consumption. This is usually combined with

Input Vector Control (IVC) to reduce the leakage power consumption. Leakage power

consumption is dependent on the state of the inputs to a gate, and thus in IVC, the

functional unit inputs are chosen to minimize the total leakage.

Both techniques could be used for NBTI degradation reduction. Power-gated tran-

sistors do not experience NBTI degradation. However, the wake-up time for a power-

gated functional unit is orders of magnitude longer than for a clock-gated, input vector-

controlled unit [15]. Clock gating and IVC methods allow for more temporally �ne-grained

control.

Wang et al. investigated the use of IVC to reduce NBTI degradation [8]. In practice,

this control can be implemented either by placing MUXes on the inputs or by using a

scan-chain. Unfortunately, for many circuits, the input vector may only be able to control

a few levels of the circuit's internal gates. Consequently, they observed only an average

3% improvement in delay for the ISCAS85 benchmarks. They predict that for future
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technologies, smaller gate sizings and higher temperatures may increase the bene�t of

this technique.

In contrast with IVC, internal node control (our proposed technique) permits much

greater control of all levels of the circuit, thereby allowing greater reduction in the NBTI-

induced delay.
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CHAPTER 3

Internal Node Control

Internal node control (INC) refers to setting the states of individual nodes or gate

outputs at any layer of the circuit to speci�c values. With this extension to IVC, further

control and thus NBTI mitigation is possible. INC can be implemented by the addition

of node control circuitry at the output of each controlled gate.

There are several important observations about INC insertion for NBTI minimization

in CMOS. We �rst describe a speci�c implementation of INC originally developed for static

power consumption minimization. We then discuss the di�culty of removing NBTI stress

from all PMOS transistors in a circuit and note a property of NOR gates that lessens the

associated cost. Next, we explain the structural properties of transistors requiring NBTI

stress removal and give our problem de�nition. We show that the problem isNP-complete

via a reduction from circuit-SAT.

3.1. INC Implementation

In order to force a node to a speci�c value, we borrow a technique from work by

Abdollahi, Fallah, and Pedram on leakage minimization [16]. In this technique, a gate

can be modi�ed to allow its output to be forced either high or low, although not both. To

force the output high, the output of the gate is connected to Vdd via a PMOS transistor in

parallel with the existing pull-up network. This is controlled by an active-low sleep signal

that pulls the output high when enabled. In order to prevent a short through the gate,
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Figure 3.1. CMOS gates modi�ed to include node control [16].

the pull-down network is then placed in series with an NMOS transistor. This transistor

is responsible for the majority of the increase in gate delay. To force an output low, a

similar modi�cation is made. This is illustrated in Figure 3.1.

Unfortunately, the addition of this extra circuitry required for INC increases circuit

delay. For a 65 nm Berkeley Predictive Technology Model, [17, 18], this technique results

in an �12.5% increase in delay for a simple inverter. The absolute delay appears to be

independent of gate type, so the percentage decreases for larger gates.

3.2. Potential of INC for CMOS

For an inverting logic implementation technology such as CMOS, if all of the inputs

to a gate are high, then the output will be low. Thus, it seems that in order to place non-

stressing (high) values on all PMOS inputs, internal node control must be implemented

at the output of every gate. Recall, however, that NBTI stress is due to negative bias

between the source node and the transistor input (Vgs = -Vdd); it is not just due to the low

input value. For gates with parallel pull-up networks (e.g., inverters and NAND gates),

the source node for each PMOS transistor is always at Vdd and each transistor is stressed

whenever the input is low. For gates with series pull-up networks (e.g., NOR gates), the
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Figure 3.2. For a NOR gate, destressing the top PMOS destresses all sub-
sequent transistors in the stack.

source node voltage, except for the top transistor in the PMOS stack, is dependent on the

state of the transistors higher in the stack [19]. Speci�cally, the source node voltage for

any transistor below an \o�" transistor will be close to ground and thus, even for a low

input, Vgs will not approach -Vdd. This is illustrated in Figure 3.2. While this reduces (to

one) the number of high inputs needed to eliminate static NBTI stress in a NOR gate, it

does not help with the problem of inverting logic. A single high input to a NOR gate will

force the output low, and thus will still potentially stress the subsequent gate.

To eliminate static NBTI stress on all the PMOS transistors in a circuit, the outputs

of most gates must be forced high. Gates feeding only into the lower PMOS transistors

of NOR gates are the exception. Because of the increase in delay associated with INC

insertion, the performance gained (rather, retained) due to NBTI minimization is less

than that lost due to INC insertion at every gate. It is not practical to cover every gate

with INC. Focused mitigation is required. That is, it is necessary to �nd the set of nodes

for INC insertion that minimizes the overall circuit delay in the presence of NBTI.
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The relevant transistors for NBTI stress removal are those on the critical path or those

which, due to NBTI degradation over circuit lifetime, may ultimately be on this path.

That is, a critical transistor is one with a timing slack less than its NBTI-induced increase

in delay. If all of these transistors can be placed in unstressed states, static NBTI will

not increase system delay. Unfortunately, identifying these critical transistors is hard.

The slack for each gate depends on the delays of all the prior and subsequent gates along

its path. Therefore, it is dependent on the NBTI stress and node control delay of each

of those gates as well. The addition of node control to a single gate can, in the worst

case, change the slack of every other gate in the circuit. These control nodes introduce

additional delay that, depending on their locations, may adversely a�ect the critical path.

It is thus necessary to optimally trade o� the reduction in NBTI-induced delay and the

increase in delay due to the addition of INC.

INC Insertion

1

0
1

1

0
1

0

1

1

0 1
INC

(a) Inline

INC Insertion

1

1

1

0

1

1

0

1

1

1

0

10
INC

(b) PMOS Stack

0

1

1

1

0

1

1

1

0
1

0

1

0

1

INC Insertion

0
0

1
INC

(c) O�path

Figure 3.3. Three example INC insertion scenarios. Gates a�ected by NBTI
are shaded and critical path lines are darkened.

Figure 3.3 shows three example INC insertion scenarios. These are intended as ex-

amples of a subcircuit far removed from the primary inputs of the circuit containing it.
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Because IVC loses e�ectiveness as circuit depth increases, the input vectors for these ex-

amples are �xed and IVC is not considered. The critical path in each circuit is shown

in bold, and critical path gates a�ected by NBTI are shaded. For simplicity, in these

examples we assume that INC insertion does not change the location of the critical path,

but only its delay. More speci�cally, we assume su�cient slack for INC insertion.

Figure 3.3(a) shows the insertion of node control inline with the critical path. In this

case, the delay added by the node control on the �rst gate must be less than the NBTI

delay on the second gate or the INC should not be added. Figure 3.3(b) illustrates the

removal of NBTI from a NOR gate using the previously explained observation about the

series PMOS stack.

The last example is more complicated. In Figure 3.3(c), NBTI stress is removed from

the second NAND gate by inserting an INC node o� of the critical path such that the

correct value propagates through to the critical gate. In this scenario, the node control

can be added to a gate with su�cient slack, even if that gate is several gates removed

from the critical path. Note that although the second NAND gate is stressed by NBTI

after INC insertion, the stress does not occur on a critical path input and therefore does

not increase total circuit delay.

3.3. Problem De�nition and Complexity

We formulate the task of NBTI-induced delay reduction via INC as an optimization

problem. The locations of internal node controls are selected in order to minimize the

total combinational delay due to both INC overhead and static NBTI after some speci�ed

period of time. The input to the problem consists of a combinational circuit represented
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as a graph of connected gates. For each gate, three delays are speci�ed: (i) the basic delay

for an unmodi�ed gate, (ii) the increase in delay if INC is added, and (iii) the increase in

delay after some period of NBTI-stress, e.g., 10 years. The task is to �nd the input vector

and node control insertion points that minimize the critical path delay after it has been

subjected to NBTI stress. In other words, the goal is to minimize the increase in delay

between the original unstressed circuit and the INC-modi�ed, stressed circuit.

We will show that the decision version of this problem is NP-complete. In the decision

problem, instead of minimizing the critical path delay, a delay bound b is speci�ed and

the task is to determine whether an input vector and set of INC placements exist such

that the critical path delay is less than or equal to b.

Lemma 1. The problem of IVC selection and INC placement for NBTI minimization

is in NP.

Proof. A solution can be easily checked in polynomial time by computing the as-

sociated critical path delay. Speci�cally, the delay can be determined in time linear to

the number of gates via a simple topological traversal of the circuit, computing the gate

output values and arrival times. �

Lemma 2. The problem of IVC selection and INC placement for NBTI minimization

is NP-hard.

Proof. To prove that the problem is NP-hard, we use a reduction from circuit-SAT.

In circuit-SAT, the task is to decide, for a given boolean circuit C with a single output, if
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there is an assignment to the inputs such that the output is true. We give a polynomial-

time transformation from an instance of circuit-SAT to our problem with speci�ed bound

b = 0 s.

For each gate in the circuit C, the intrinsic delay and NBTI delay are set to 0 s. This

ensures that for any inputs, the critical path delay is 0 s. The INC delays are set to a

positive value (e.g., 1 s), thus ensuring that a solution satisfying the bound b = 0 s will not

have any INC nodes and that the Boolean function implemented by the circuit remains

unmodi�ed.

We add a gadget to the output of the circuit in such a way that the critical path delay

is greater than 0 s if the output is false, and 0 s if the output is true. Speci�cally, an

inverter is inserted at the output of the circuit. The basic delay is set to 0 s and the NBTI

delay is set to a positive value (e.g., 1 s). The INC delay is unimportant but can be set to

0 s. If the output of the original circuit C is true, the inserted inverter will not be stressed

by NBTI, and the critical path delay will be 0 s. If the output is false, the inverter will

be stressed and the delay will be positive, thereby exceeding the bound b = 0 s.

In short, any circuit-SAT problem instance can be solved as an instance of our problem

using this transformation. The circuit-SAT instance has an accepting input assignment

if and only if the transformed problem has an input assignment leading to a critical path

delay of 0 s. �

Theorem 1. The problem of IVC selection and INC placement for NBTI minimization

is NP-complete.

Proof. This follows directly from Lemma 1 and Lemma 2. �



26

CHAPTER 4

Optimal Formulation and Solution

4.1. Mixed Integer Linear Programming Formulation

In order to �nd the optimal solution, we describe the optimal mixed integer linear

program (MILP) formulation.

A combinational circuit is modeled as a directed acyclic graph G = (V;E). V is a set

of primary inputs (I � V ), gate outputs (N � V ), and primary outputs (Q � V ). E

is a set of directed edges modeling connections between two gates. The gate outputs N ,

are further divided into three sets NI , NR, and ND representing NOT, NOR, and NAND

gates. Pv are the predecessors of v.

The instrinsic delay of a gate is �n2N . The increase in delay due to NBTI stress is

�n2N , and the increase in delay due to the addition of node control on the gate output is

�n2N .

The following variables are used. �n2N is a binary variable:

�n =

8><
>:

1 if INC is added to gate n

0 otherwise

�n2N is a binary variable representing the forced value of node n, if �n is 1.
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0 �  v2V � 1 is the value of node v. If �v is 1, then  v is �v. Otherwise, it is

determined by the inputs to the gate. For v 2 I,  v is explicity constrained to be binary.

�v2V is the earliest arrival time at node v.

We optimize the circuit delay by minimizing the maximum output arrival time:

(4.1) minimizemax
8q2Q

�q

The Boolean function of the gates, combined with the node control, is modeled by a

set of constraints that force each output  v to the proper value based on �v, �v, and the

inputs to node v. These constraints are equivalent to those specifying the convex hull of

the function, where each input and output represents one dimension. For example, the

truth table for an inverter, shown in Figure 4.1, leads to the following constraints. NAND

and NOR gates are similarly determined.

8n 2 NI : �n + �n �  n � 1

�n � �n +  n � 1

��n +  n +  p � 1 � 0

��n +  n +  p � 1 � 0

� p + �n �  n � 0

� p � �n �  n � �1

The earliest arrival times are modeled by constraining a node v's arrival time to be

later than or equal to all of its inputs' arrival times plus any delays associated with the

gate. The instrinsic delay �v of each gate is always included. The internal node control

delay �v is only included if �v is 1. The NBTI delay �v is included when, based on the
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 p �n �n  n
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Figure 4.1. Truth table for an inverter with INC.  p is the input, �n is the
INC selection variable, �n is the forced value, and  n is the output.

inputs, the gate is stressed. For NOT and NAND gates, the following constraint enforces

this relationship.

8n 2 NI [ND; 8p 2 Pn : �n � �p + �n + (1�  p)�n + �n�n

As discussed in the previous chapter, if any input to a NOR gate is high, we assume that

the whole gate is unstressed. The variable 0 � 
n2NR � 1 is 1 if NOR gate n is stressed

and 0 otherwise. Thus, the following constraints implement the arrival time computation

for NOR gates.

8n 2 NR; 8p 2 Pn : 1� 
n �  p

1� 
n �
X
r2Pn

 r

�n � �p + �n + 
n�n + �n�n

Optimization Objective 4.1 ensures that the arrival times on the critical path are minimal.
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4.2. Experimental Results

We evaluated the proposed technique on the ISCAS85 combinational benchmarks [3].

The experimental setup and results are presented below. We also provide some analysis

of the variance in results seen across the benchmark set.

4.2.1. Experimental Setup

In order to gauge the performance of the method, it was tested on the ISCAS85 combina-

tional benchmark suite for a 7 gate library finv, nor2, nor3, nor4, nand2, nand3, nand4g.

For consistency, the gates were sized for a maximum fanout of three. Timing information

for the gates (with and without node control) was obtained through HSpice simulations

using the 65 nm Berkeley Predictive Technology Model [18, 17]. The timings for these

self-developed gates, without node control, were calibrated to similar gates in a TSMC

65nm library to ensure that the timings were representative of real-world libraries [20].

Static NBTI delay was assumed to be about 10% of the initial gate delay after 10 years of

stress [2]. The benchmarks were mapped to the library using Synopsis Design Compiler.

The MILP was solved using the open-source software SYMPHONY [21] for two dif-

ferent cases.

(1) To determine the delay using optimal input vector control only, the solver was

run with INC disabled (i.e., the node control selection variables forced to 0).

(2) Then, the solver was run with internal node control enabled.

The resulting problem instances are rather large for an MILP solver. Therefore, the solver

was set to stop solving and report the results when the upper and lower bounds for the

optimal delay were within 0:2% of each other.
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4.2.2. Analysis of Results

The circuit delay results for each benchmark are shown in Table 4.1. Column \Baseline"

shows the initial delay of the circuit, before any NBTI degradation has occurred. Although

we are primarily interested in the improvement in delay between the optimal IVC-only and

optimal IVC+INC cases, the next �ve columns provide additional information, speci�cally

the delays associated with �ve representative input vector scenarios, designed to help the

reader interpret our results. The \All 0's" and \All 1's" columns report the delay, after 10

years of NBTI stress, for an all zero-valued and all one-valued input vector, respectively.

The \Min", \Max", and \Average" columns shows the minimum, maximum, and average

delays, respectively, for a set of 100000 randomly generated input vectors, once again

considering 10 years of NBTI stress.

These results show that neither an all-zeros or all-ones input vector is a good choice.

Neither is routinely better than the other and both are much worse the minimum-observed

delay and the optimal delay. The average delay can be interpreted as the delay if neither

IVC nor INC was applied. If IVC is not used, when a functional unit is idle, it's inputs

will likely be those from the last cycle in which it was used. These inputs vary each time

the unit is placed into an idle state, and thus can be approximated by our set of randomly

generated input vectors.

For these circuits, the minimum-observed IVC delays are quite similar to the optimal

IVC-only delays. This suggests that for circuits which are too large for the MILP solver,

the minimum delay across a set of randomly generated input vectors can provide a good

estimate for the optimal IVC-only delay. We will use this observation in chapter 6 when

testing the bene�ts of INC on some larger circuits.
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Table 4.1. Path Delays (ns) for ISCAS85 circuits

Circuit Baseline Non-optimal Input Vectors Optimal IVC Only Optimal IVC + INC
All 0's All 1's Min Max Average LB UB % Gap LB UB % Gap

c432 1650:6 1707:7 1717:8 1701:3 1741:5 1725:6 1697:9 1701:3 0:20 1690:7 1691:8 0:07
c499* 1588:7 1660:9 1642:7 1641:2 1669:7 1658:5 1633:0 1641:2 0:50 1626:7 1629:6 0:18
c880 1884:3 1970:6 1965:4 1935:6 1981:2 1964:6 1926:7 1927:9 0:06 1911:4 1914:0 0:14
c1355* 1505:1 1567:8 1562:7 1555:5 1588:4 1570:2 1546:8 1555:5 0:56 1534:6 1541:5 0:45
c1908 2112:0 2182:9 2209:8 2176:9 2216:6 2198:7 2175:0 2176:1 0:05 2171:3 2175:7 0:20
c2670* 1607:1 1668:3 1679:9 1657:1 1692:3 1675:3 1651:3 1657:1 0:35 1627:5 1629:1 0:10
c3540* 2546:4 2651:8 2648:4 2624:7 2673:2 2649:8 2615:6 2624:7 0:35 2595:7 2598:4 0:11
c5315 2396:9 2499:7 2485:3 2451:7 2518:3 2490:4 2448:2 2450:9 0:11 2435:6 2435:8 0:01
* Solver was stopped after 24 hours but before the 0.2% stop gap was reached.

Table 4.2. % Improvement in NBTI-
induced Delay

Circuit % Improvement % Improvement
over Optimal IVC over Average IVC
LB Mid UB LB Mid UB

c432 12:9 17:0 20:9 45:1 45:8 46:5
c499 7:8 18:6 27:7 41:4 43:5 45:6
c880 30:1 34:1 37:9 63:0 64:6 66:3
c1355 12:7 28:4 41:5 44:1 49:4 54:7
c1908 �1:1 3:2 7:5 26:5 29:1 31:6
c2670 50:3 55:0 59:2 67:7 68:9 70:1
c3540 24:8 31:3 37:1 49:7 51:0 52:3
c5315 24:2 26:3 28:4 58:4 58:5 58:6
* Solver was stopped after 24 hours but before the 0.2%
stop gap was reached.



32

Even with the 0.2% stop gap for the solver, it did not �nish for several of the bench-

marks after several days. Thus, for the reported results, we manually terminated execution

when the solver had been running for more than 24 hours. For all circuits we report both

the lower and upper bounds. Table 4.2 shows the percent reductions in delay.

The column \% Improvement over Optimal IVC" shows the improvement attributable

to INC alone. Speci�cally, the improvement is reported as the percent reduction in NBTI-

induced delay between the IVC-only and the IVC+INC cases:

%improve = 100�
(Dinc �Dbase)� (Divc �Dbase)

Divc �Dbase

We report lower and upper bounds on this improvement as well. The lower bound is

computed using the IVC lower bound and the IVC+INC upper bound. The upper bound

is computed using the IVC upper bound and the IVC+INC lower bound. We also report

a midpoint improvement which is calculated using the midpoints of the IVC bounds and

the IVC+INC bounds.

The average midpoint improvement is 26.7% with a standard deviation of 15.1%. The

average of the lower bounds is 20.2% and the average of the upper bounds is 32.5%.

However, the improvement depends quite heavily on the benchmark. For benchmark

c2670 over 50% of the degradation is prevented, while for benchmark c1908 the upper

bound shows only single-digit improvement. The calculated lower bound on improvement

for c1908 is negative. Obviously, the optimal worst case lower bound is 0%, if no INC

placements are added. However, the best IVC+INC solution found by the solver (an

upper bound on optimal) is worse than the IVC lower bound, leading to the negative

improvement.
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Column \% Improvement over Average IVC" shows the reduction in NBTI-induced

delay due to the combination of INC and IVC. As mentioned previously, we use the average

IVC delay from our set of randomly generated input vectors as the delay if neither IVC

nor INC were used. The percent improvement is then computed as the reduction in

NBTI-induced delay between the optimal IVC+INC case and the average IVC case. The

average improvement in delay is 51.3%. That is, on average, half of the NBTI-induced

delay can be prevented by the combined use of input vector control and internal node

control. Similar to the previous results, the improvement is benchmark dependent with

c2670 showing a 68.9% reduction while c1908 shows only a 29.1% reduction.

We do not discuss the area or power impacts of INC here because the MILP formulation

optimizes only the critical path delay, but not the total number of INC placements.

Chapter 5 describes a near-optimal heuristic that optimizes the delay while attempting to

minimize the number of modi�ed gates. The results in section 5.2 show that near-optimal

delays can be achieved with little impact on area and power consumption.

4.2.3. Analysis of Variance

One potential cause for the high variance of the improvements among the benchmarks is

that, due to the short critical paths of these circuits, the removal of NBTI from a single

gate on the critical path has a large impact on the percentage improvement. In the best

case, INC will remove NBTI stress from all critical path gates. Thus, for circuits such

as these, with critical path lengths of 10 to 20 gates, each gate represents 5% to 10% of

the total delay. Therefore, removing NBTI stress from one additional gate can add 5{10

percentage points to the delay improvement.



34

More formally, we hypothesize that the removal of NBTI stress from each critical path

gate can be treated as an independent Bernoulli trial. In reality, there is some dependence

between successive gates. However, we can safely assume independence because the actual

dependence is limited to a few levels of logic. By the law of large numbers, as the number

of gates on the critical path increases, one can expect that the observed improvements

will be closer to the expected or average improvement. If this hypothesis is correct, it can

explain the high variance seen in the ISCAS85 benchmark set, which has relatively short

critical paths.

We tested this hypothesis by developing two sets of random circuits, one with short

critical paths and one with long critical paths. To make the random circuits as realistic

as possible, we employed the CGEN circuit parameterization and generation package [22].

CGEN was designed to help CAD researchers develop random-yet-reasonable circuits to

test their proposed algorithms. The package includes two utilities. The �rst is used to

characterize a circuit by the extraction of parameters such as circuit shape, average fan-

in, and average fan-out. The second utility takes a set of these parameters as input and

generates a random circuit with similar parameters.

We characterized ISCAS85 benchmark c880 and generated 50 random circuits for

the short critical path circuit set. To create a long critical path circuit to characterize,

we linked four instances of the c880 circuit serially, arbitrarily connecting the outputs

of one stage to the inputs of the next. 50 random circuits were generated from the

characterization of this circuit to create the long critical path circuit set. Each of these

circuits was then solved for the baseline, IVC-only, and IVC+INC cases as described
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subsection 4.2.1. Due to the size of the long circuits, the MILP solver was set to stop

when the upper and lower bounds were within 0.5% of each other.

Table 4.3. Analysis of improvement for the sets of random circuits.

Circuit Set Average (%) Standard Deviation (%)

Short 22:4 19:8
Long 42:0 9:3

The results of this test are shown in Table 4.3. There is a signi�cant decrease in

variance, which is consistent with our hypothesis. The standard deviation falls from 19%

for a random set of short critical path circuits to 9% for a random set of circuits 3-4�

longer. The 14% standard deviation for the ISCAS85 set falls between the deviations

for the long and short critical path sets. Because circuits in the short and long critical

path sets have similar lengths to the extremes of the ISCAS85 set, this relationship is

also consistent with our hypothesis. Thus, we conclude that some of the variance in

improvement for the original ISCAS85 benchmarks is due to the limited length of the

circuit critical paths.

4.3. Multiple-Vector INC

In the preceeding analysis, we have assumed that only a single input vector and set

of INC placements could be chosen for a given functional unit. Consequently, the same

set of PMOS transistors are stressed whenever the unit is idle and sleep mode activated.

If several input vectors were chosen and alternately applied when the unit is idle, it is

possible that the NBTI stress could be spread out over more transistors, resulting in less

total timing degradation. This idea was proposed by Abella, Vera, and Gonzalez, but they

did not perform analysis of the potential bene�ts of the technique and left development
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of input vector selection algorithms for future work [14]. In this section, we investigate

the potential of multiple-vector INC for the ISCAS85 benchmarks. We �nd that in most

cases, the addition of multiple input vectors does not decrease the critical path delay.

In the few cases where some bene�t is seen, the decrease in delay is small enough that

it is unlikely to outweigh the increase in area required to implement the multiple vector

strategy.

Internal node control requires the selection of both an input vector and a set of INC

placements. Sets of inputs vectors and sets of INC placements could be cycled through to

potentially reduce the NBTI degradation on individual gates. However, the implementa-

tion of such a technique has some drawbacks. In the case of multiple input vectors, all the

vectors must be stored and muxes or scan-chain logic is needed to route the chosen input

vector to the functional unit. In the case of INC, additional gates must be modi�ed to

support INC and multiple sleep signals must be routed across the functional unit, further

increasing area, delay, and leakage power. In both cases, a small state machine must also

be included to select the current input vector and sleep signal.

Because of the additional area, delay, and routing complexity imposed by the use of

multiple INC placement sets, we focus this analysis on the use of multiple input vectors

only. INC placements are still used, but the same placements are used across all cycles

(i.e., for all input vectors). For the remainder of this discussion, the application of an

input vector is referred to as a cycle and the total number of input vectors chosen is the

number of cycles. Thus, a 4-cycle solution refers to a rotation among four input vectors.

We assume that with any reasonable strategy for cycling among the input vectors,

in the long run all the vectors will be used for approximately the same amount of time.
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Figure 4.2. Upper and lower bounds for multi-cycle INC for the ISCAS85 benchmarks.

Thus, the NBTI delay for an individual gate is computed as the fraction of the cycles for

which the gate is stressed times the delay if the gate were stressed for the entire 10 year

period.

We modi�ed our MILP formulation to support an arbitrary, user-de�ned number of

cycles and ran it for 2, 3, and 4 cycles on the ISCAS85 benchmarks. Figure 4.2 presents

the results. As with the single-cycle problem instances presented earlier, the solver was

not able to �nd optimal solutions in a reasonable amount of time, and therefore we

present the lower and upper-bounded ranges within which the optimal solutions lie. For

each benchmark, the results for 1, 2, 3, and 4 cycles are shown side-by-side. The range in

which the optimal solution lies for each problem instance is represented by a bar extending

from the lower bound to the upper bound. Multi-cycle solutions are free to repeat a vector.
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Therefore, the upper bound for any multi-cycle problem instance can be no higher than

the upper bound for the corresponding single-cycle problem instance. Thus, for instances

where the upper bound proved by the MILP solver is greater than the corresponding

single-cycle upper bound, we report the single-cycle upper bound in its place.

As can be seen from Figure 4.2, the use of multiple input vectors does not signi�cantly

decrease the circuit delay. When one considers that these results do not account for the

extra delay that would be imposed by the additional circuitry required to implement the

multiple-vector strategy, the results are even less encouraging. Only benchmark c499

shows a signi�cant decrease in the lower bounds for the multiple-vector cases. Even in

this case, there may still not be any real improvement because the single-vector range

still overlaps with multiple-vector ranges. Additionally, the potential improvement is

seen only when going from one cycle to two. The increases to three and four cycles

do not improve upon the two-cycle bounds. It is likely that the potential for the small

amount of improvement for c499 is because of the several parallel critical paths in this

benchmark. The use of two input vectors may allow some degradation balancing between

them. For the other benchmarks, which have more well-de�ned single critical paths, the

use of multiple vectors has little impact. Although our analysis suggests that INC reduces

the severity of NBTI-induced degradation, it also indicates that using multiple vectors

brings no additional improvement.
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CHAPTER 5

Linear-Time Heuristic

The MILP-based optimal solution method is not practical for large circuits because

this problem is NP-complete. A heuristic solution that provides good, and ideally near-

optimal, solutions in a reasonable amount of time is necessary. In this chapter, we describe

a linear-time algorithm for input vector selection and internal node control placement.

Our technique draws from work on leakage power minimization by Cheng, Chen, and

Wong [23].

5.1. Algorithm Description

5.1.1. Overview

Our heuristic (see 1) takes advantage of the fact that the problem can be solved

optimally for rooted-tree structures in linear time using dynamic programming. It �rst

PI1
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PO0

Dangling
Inputs Tree 0

Tree 1

DAG Circuit

PI1

PI2

PI3

PI4

PO1

PO0

PI0 PI0

Figure 5.1. A circuit partitioned into rooted trees, with the dangling inputs labeled.
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Algorithm 1 INC Placement Heuristic Overview

Require: circuit G
Require: maximum number of iterations, N
1: partition circuit into trees
2: select initial values for dangling inputs
3: for i = 0 to N do
4: for all partitions do
5: choose IVC and INC using dynamic programming
6: end for
7: update dangling input values
8: if solution is the same as previous then
9: break fCheck for convergenceg
10: end if
11: if oscillation is detected then
12: repartition the circuit
13: end if
14: end for
15: greedily remove INCs which do not a�ect delay
16: return input vector and INC placements

partitions a given circuit into rooted trees by removing some connections between gates

(line 1). This partitioning creates dangling inputs at these gates whose input connections

were removed, as illustrated in Figure 5.1. Values are assigned to these dangling inputs

(line 2) and the optimal values for the primary inputs and INC placements are chosen

for each partition (lines 4{6). The values for the dangling inputs are updated based on

the new outputs of their parent gates in the original circuit (line 7) and the solutions for

the partitions are recomputed based on these new dangling input values (line 3). This

iteration continues until the solution has converged (lines 8{10) or a pre-set number of

iterations has been reached (line 3). Convergence is identi�ed when the values for the

dangling inputs do not change between two consecutive iterations. To ensure convergence,

when the revisitation of a solution is detected, the circuit is repartitioned (lines 11{13).
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Empirical results show that this repartitioning breaks oscillations and leads to convergent

solutions.

5.1.2. Partitioning and Initial Solution

Solution quality is highly dependent on the method used to partition the circuit and the

initial values assigned to the dangling inputs. Tree-based partitioning has been proposed

for several circuit design problems in the past, including leakage power minimization

and technology mapping [23]. For these problems, the cost function (e.g., total leakage

power, circuit area) is additive: the overall cost is essentially the sum of the costs of

the individual partitions. It is thus important to maximize the sizes of the partitions in

order to maximize the e�ectiveness of the optimal dynamic programming algorithm. The

speci�c choice of which connections to remove, though, is not as critical.

For INC placement, the cost function is not additive: the critical path delay for the

entire circuit is not the sum of the critical path delays of each partition. Thus, in addition

to maximizing the sizes of the partitions, it is also important to keep the original critical

path in a single partition. Of course, for circuits with parallel critical paths, this will not

always be possible. Our partitioning algorithm tries to ensure that these critical paths

are not cut by using slack information to determine which connections to remove. In a

rooted-tree structured circuit, each gate has a fanout of 1. Thus, for each gate with a

fanout greater than 1, our partitioning algorithm keeps the connection with the smallest

slack, removing the others. Dangling inputs are inserted at the broken connections.

As mentioned in the previous paragraph, the choice of the initial values for the dangling

inputs is also important. We choose these initial values by applying the optimal dynamic
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Algorithm 2 Dynamic Programming Algorithm

Require: tree-structured circuit partition P
Require: arrival times and node values for dangling inputs fForward Passg
1: for all gates g in a topological ordering of P do
2: for all combinations of inputs i do
3: compute arrival time and output value based on the arrival times of g's parent

gates
4: compute arrival time and output value if INC is added
5: end for
6: store i with a 0 output and the smallest arrival time
7: store i with a 1 output and the smallest arrival time
8: end for
fBackward Passg

9: choose primary output value with smallest arrival time
10: for all gates g in a reverse topological ordering of P do
11: select the stored i with the output that matches the child's selected i
12: end for
13: return the input values and the INC placements

programming algorithm to the unmodi�ed directed acyclic circuit. Because the circuit

is not tree-structured, in the backward pass phase of the algorithm, con
icts will occur.

At each gate with a fanout greater than 1, the child gates may require di�ering output

values from their shared parent. In these cases, the value required by the majority of the

children is chosen. In the case of a tie, 1 is chosen because, in general, it will prevent

NBTI stress on the child gates.

5.1.3. Dynamic Programming

The optimal dynamic programming algorithm is shown in 2. The algorithm takes as

input a tree-structured circuit partition and, for each of the dangling inputs, the arrival

time and node value. For primary inputs, the arrival time is assumed to be 0 and the

node value is determined by the algorithm. The algorithm consists of two phases, the
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forward pass and the backward pass. In the forward pass, two pieces of information are

computed for each gate, the input combination and INC state with a 0 output and the

smallest arrival time, and the input combination and INC state with a 1 output and

smallest arrival time. Speci�cally, the gates are examined in a topological order (line 1).

For each gate, each possible input combination is examined (line 2). The output value

is computed and, based on the arrival times previously computed for the parent gates,

the arrival time is computed (line 3). The value and arrival time if INC are added is also

computed (line 4). For each output value, 0 and 1, the input combination and INC state

with the smallest arrival time is stored (lines 6{7). It is possible for several input vectors

to lead to the same minimum arrival time. In the case of such ties, the covering input

vector is chosen. An input vector x is said to cover input vector y if x has 1 values in the

all the positions that y does and has an additional 1 value. For example, the vector \1011"

covers the vector \1010". In the backward phase, a speci�c value (and thus INC state)

is chosen for each of the gates. Speci�cally, the primary output value and corresponding

input combination with the smallest arrival time is chosen (line 9). The remaining gates

are then examined in a reverse topological order (line 10). For each gate, the required

output value is speci�ed by the chosen input combination for its child. The corresponding

input combination is selected for the gate (line 11).

5.1.4. Runtime

The heuristic requires time linear in the number of gates. Partitioning is performed with

a single topological traversal. The dynamic programming algorithm requires one traversal

for each phase. Although all the input combinations for each gate must be examined, this
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Table 5.1. Heuristic Results for ISCAS85 circuits

Circuit Optimal Delay Heuristic % Worse % Worse Time
LB Mid UB Delay than Mid than UB (s)

c432 1690.7 1691.3 1691.8 1700.8 0.56 0.53 1.3
c499 1626.7 1628.1 1629.6 1628.0 -0.01 -0.10 6.7
c880 1911.4 1912.7 1914.0 1914.0 0.07 0.00 2.7
c1355 1534.6 1538.1 1541.5 1547.4 0.60 0.38 5.2
c1908 2171.3 2173.5 2175.7 2175.7 0.10 0.00 3.2
c2670 1627.5 1628.3 1629.1 1629.1 0.05 0.00 11.9
c3540 2595.7 2597.0 2598.4 2595.7 -0.05 -0.10 27.0
c5315 2435.6 2435.7 2435.8 2435.8 0.00 0.00 41.0

is e�ectively constant time because the number of inputs is restricted. Finally, although

the overall algorithm iterates multiple times, empirical results show that it converges

rapidly and the number of iterations can be limited to a small number (15 in our reported

results).

5.2. Experimental Results

We implemented the proposed heuristic in Python and tested it on the same bench-

marks as in section 4.2. All tests were done on a 2.5GHz AMD Athlon XP computer

with 2GB of memory. The runtime for each benchmark is shown in the \Time" column

of Table 5.1.

The results are shown in Table 5.1. For each benchmark, the lower, midpoint, and

upper bounds from the optimal solutions are given. The heuristic solutions are �rst

compared with the midpoint, because this was used in section 4.2 to compute the average

improvement. In all cases, the heuristic solutions are quite good, with an average 0.17%

degradation from the optimal midpoint. For benchmarks c499 and c3540, the heuristic

solution is actually better than the optimal midpoints, although obviously not better than



45

Table 5.2. Area Impact of INC

Circuit Total INC Original INC %
Gates Gates Trans. Trans. Increase

c432 159 11 636 22 3.5
c499 526 18 1836 36 2.0
c880 336 11 1306 22 1.7
c1355 480 12 1840 24 1.3
c1908 363 8 1322 16 1.2
c2670 592 13 2302 26 1.1
c3540 725 29 2966 58 2.0
c5315 1452 12 5650 24 0.4

the lower bound. Benchmark c1355 shows the worst degradation with a 0.60% increase

in the critical path delay.

We also compare the heuristic solutions to the optimal upper bound because it is

entirely possible that for many of these benchmarks, the upper bound actually is optimal.

In all cases except two, the heuristic solutions are at least as good as the optimal upper

bound. Benchmarks c432 and c1355 show the only degradation, with 0.53% and 0.38%

increases in critical path delay, respectively.

Table 5.2 shows the impact on circuit area for the solutions produced by the heuris-

tic. The number of gates modi�ed with INC and the percent increase in transistor count

needed to implement INC are shown. On average, INC imposes only a 1.6% area over-

heard, in contrast with the 8{12% overheard required for gate sizing [9]. Benchmark c432

is the worst with a 3.5% increase. The impact on power consumption will also be small.

The average 1.6% increase in transistor count should translate into a similarly-small in-

crease in leakage and switching power consumptions.
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CHAPTER 6

Industrial Circuits

6.1. Arithmetic Functional Units

Due to their relatively small gate counts, the ISCAS85 benchmarks were appropriate

for use with the optimal MILP formulation. Thus, they were useful both for showing the

potential bene�t of INC and for verifying that the heuristic can produce near-optimal

results (at least for small benchmarks). However, real industrial designs for which INC

would be most useful will, in most cases, be much larger. Arithmetic circuits are one

such class of larger circuits for which INC, intended for use on functional units that are

frequently idle, could be used. In this chapter, we present the results of our internal node

control heuristic applied to several arithmetic circuits.

Table 6.1 lists the arithmetic circuits we used for evaluation. The adder/subtracter

and multiplier designs were synthesized from high-level VHDL descriptions using Synopsys

Design Compiler. The sources for other designs are given in the table. All designs were

Table 6.1. Descriptions of Arithmetic Circuit Benchmarks

Circuit Source Description
addsub8 Synopsys Design Compiler single-cycle 8-bit unsigned adder/subtracter
addsub16 Synopsys Design Compiler single-cycle 16-bit unsigned adder/subtracter
addsub32 Synopsys Design Compiler single-cycle 32-bit unsigned adder/subtracter
addsub64 Synopsys Design Compiler single-cycle 64-bit unsigned adder/subtracter
mult8 Synopsys Design Compiler single-cycle 8-bit unsigned multiplier
mult16 Synopsys Design Compiler single-cycle 16-bit unsigned multiplier
mult32 Synopsys Design Compiler single-cycle 32-bit unsigned multiplier
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Table 6.2. Path Delays (ns) for Arithmetic Circuits

Circuit Baseline Non-optimal Input Vectors Delay Heuristic
Delay All 0's All 1's Min Max Average Delay

addsub8 2167:6 2230:0 2265:2 2221:3 2280:8 2253:8 2211:7
addsub16 3976:9 4078:6 4158:5 4078:6 4183:3 4133:4 4059:5
addsub32 7618:5 7797:1 7966:7 7797:1 7992:2 7915:6 7778:0
addsub64 14997:9 15335:3 15684:0 15335:3 15698:0 15581:4 15316:2
mult8 3132:7 3277:6 3269:6 3228:7 3294:6 3264:6 3197:7
mult16 5654:8 5902:1 5883:0 5845:1 5930:1 5891:4 5756:2
mult32 10734:8 11188:1 11162:7 11113:1 11239:8 11181:9 10913:2

mapped using Design Compiler to the same gate library used for the ISCAS85 benchmarks

in the preceeding chapters.

6.2. Experimental Results

As with the ISCAS85 benchmarks, we determined both the baseline delay (i.e., the

initial delay before any NBTI degradation has occurred) and the delays for a set of

100,000 random input vectors. Because these circuits are so large, we could not solve for

the optimal input vector and its delay. However, as noted in section 4.2, for the ISCAS85

benchmarks the minimum delay seen over the set of 100,000 random input vectors was

close to the delay for the optimal input vector. Thus, for the following analysis we use this

minimum delay as a substitute for the optimal IVC-only delay. Our proposed heuristic

was used to determine the INC placements and the associated delay.

Table 6.2 shows the results for the arithmetic circuits. The addsub circuits show close

to a 50% decrease in NBTI-induced delay when compared to the average IVC delay.

In other words, the combination of IVC and INC eliminates approximately half of the

NBTI-caused delay. The percent improvement over the minimum IVC delay (i.e., the

improvement in delay due to INC speci�cally), however, decreases from 17.9% to 5.7% as
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Table 6.3. % Reduction in Delay for Arithmetic Circuits

Circuit % Improvement
over IVC Average over IVC Min

addsub8 48:8 17:9
addsub16 47:2 18:8
addsub32 46:3 10:7
addsub64 45:5 5:7
mult8 51:1 32:3
mult16 57:2 46:7
mult32 60:1 52:9

the length of the circuit increases from 8 to 64 bits. This suggests that for this particular

type of adder/subtracter, INC loses e�ectiveness as the circuit size increases. This reduc-

tion in e�ectiveness may be due to the chain-like structure of the adder/subtracter. INC

may help reduce degradation in a �xed portion of the structure, but not in the chain of

gates that extends as gates are added. The opposite is true for the mult circuits. The

improvement over the average IVC delay increases from 51.1% to 60.11% when the multi-

plier is scaled from 8 bits to 32 bits. The percent reduction in delay attributable directly

to INC, the decrease compared to the minimum IVC delay, also increases from 32.3%

to 52.85%. This suggests that INC is e�ective for the large, regular, grid-like structures

used in multiplication circuits. The grid-like structure may allow for more o�path INC

placements than is possible with the chain-like structure of the adder/subtracter.
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CHAPTER 7

Conclusion

7.1. Conclusion

In this thesis, we proposed the use of internal node control to minimize the impact

of static NBTI on circuits with frequently-idle functional units. Optimal placement of

internal node controls, which allows the output of an INC-modi�ed gate to be forced to a

speci�c value during sleep mode, and optimal selection of the primary input vector, lead

to a 51.3% decrease in NBTI-induced delay for the ISCAS85 benchmarks. The application

of INC lead to a 26.7% decrease in delay relative to input vector control alone.

The problem is NP-complete, so we developed a linear-time heuristic that quickly

produces good solutions. The problem is tractable for tree-structured circuits, so the

heuristic �rst partitions a given circuit into trees by removing edges. By ensuring that

the gates on the critical path in the original circuit remain in the same partition, the

optimal solutions to these partitions can be used to provide good solutions for the overall

circuit. The heuristic solutions were within 0.17% of optimal on average and resulted in

only a 1.6% increase in area.

The technique also worked well on larger, more representative circuits, showing a

similiar 50% decrease in NBTI delay and suggesting that the technique will maintain

high speed and high solution quality for larger, industrial-scale designs. The combination
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of internal node control and input vector control can signi�cantly reduce static NBTI

degradation with only a minor increase in circuit area and power consumption.

7.2. Future Work

The work presented in this thesis focused on minimizing static NBTI stress on com-

binational logic gates. However, the transistors in sequential elements such as 
ip-
ops

are also susceptible to NBTI. Degradation on these elements could lead to setup and hold

time violations. An analysis of the potential severity of this problem could be performed

to determine if the development of mitigation techniques would be worthwhile.

Internal node control can be used to reduce NBTI degradation during idle periods, but

is not appropriate for the minimization of dynamic NBTI. Although some degradation is

unavoidable when a circuit is doing useful work, if the NBTI problem continues to worsen

as is predicted for future technology processes, mitigation techniques for dynamic stress

will become more important.
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